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ABSTRACT 

This Report summarizes theoretical ideas and techniques used for 
the analysis of nonstationary data. Details are presented for estimation 
of nonstationary mean values, correlation functions, and spectral 
density functions. Three methods are discussed for estimating non- 
stationary mean values : ensemble averaging, short-time averaging, and 
orthogonal-function averaging. Three methods are discussed for esti- 
mating nonstationary spectral density functions : double-frequency 
spectra, time-varying power spectra, and time-averaged power spectra, 

1. INTRODUCTION 

A random process {xi ( t ) }  , i = 1, 2, 3, ... , is an en- 
semble of functions of a single variable t which can be 
characterized through its statistical properties. A typical 
random process is pictured in Fig. 1. The variable t is 
time or any other parameter of interest. 

The set of amplitude values at a particular time t,, 
denoted by xi  (t ,) ,  can be combined together in appro- 

I 

I f 
f l  f2 0 

Fig. 1. Random process 

priate ways to determine their mean value, mean square 
value, and higher moments, and thus a complete proba- 
bility distribution at t , ,  where the probability distribu- 
tion yields the probability that the amplitude values at t ,  
will lie in any specified amplitude range. For example, 
the mean value at t ,  is defined by the ensemble average, 
denoted by the expected value E [ 1, namely, 

A different t = t2 can be selected, and similar statistical 
calculations may be carried out for the set of amplitude 
values {xi ( t2 ) } ,  i = 1, 2, --.  . In general, significantly dif- 
ferent results would be obtained for the two sets {xi ( t J }  
and {xi ( t J } .  That is to say, the statistical results would 
not be invariant with respect to translations in time. 
Random processes of this general category are known as 
nonstationay random processes. A process is said to be 
statwnay when statistical properties do not change with 
time. Much past analytical work assumed a stationary 
hypothesis because it simplified the further derivations. 
This Report is concerned with methods for analyzing 
nonstationary data. 
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II. TESTING FOR STATIONARITY 

The first step in the analysis of data suspected of hav- 
ing nonstationary characteristics is to examine or test the 
data for stationarity. This is very important for two rea- 
sons: Nonstationary data require much more processing 
to estimate statistical parameters of interest, such as mean 
and mean square values. Secondly, treating nonstationary 
data as stationary can lead to highly erroneous results 
and interpretations. 

Stationarity is technically a property of a collection 
(ensemble) of time-history records which together repre- 
sent a random process. A random process is said to be 
weakly stationary if the mean value and autocovariance 
(autocorrelation) function computed over the ensemble 
are invariant with shifts in the time origin (note that the 
mean square value will also be time invariant if these 
conditions exist). The process is said to be strongly sta- 
tionary if the joint density functions of all orders are time 
invariant. When only a single record from a random 
process is available, which is often true in practice, a 
property called self-stationarity is of interest. A single 
time-history record is said to be weakly self-stationary 
if the mean value and autocovariance function computed 
over short time intervals are statistically equivalent for 
intervals with different starting times. The single time- 
history record is said to be strongly self-stationary if this 
is true for all higher order joint moments. 

Most practical tests for stationarity are really tests for 
self-stationarity of single records. If the record in ques- 
tion is a sample from an ergodic random process, then 
self-stationarity of the single record implies stationarity 
for the entire random process. An experimental verifica- 
tion of the ergodic hypothesis is usually not possible since 
a collection of records would be required for such a 
verification. However, the ergodic hypothesis can often 
be justified for practical situations from a knowledge of 
the physics of the specific problem. Hence, tests for self- 
stationarity often suffice as tests for stationarity and will 
be referred to as such in the discussions to follow. 

There are many general considerations in attempting 
to develop a test for stationarity. In the past a test for 

time invariance of mean square values has often been 
accepted as a test for time invariance of an autocovari- 
ance function. The justification for this assumption is that 
it would be extremely unlikely in practical problems to 
have a variation of the autocovariance function without 
a variation of the mean square value, which is the peak 
value of the autocovariance function; i.e., the value of 
the autocovariance function for zero time displacement. 
Another way of looking at this statement is in terms of 
the power spectrum as follows. A change in the covariance 
function without a change in the mean square value is 
equivalent to a change in the general shape of the power 
spectrum without a change in the total area under the 
power spectrum. This clearly would be an unlikely occur- 
rence (although not impossible) for data representing the 
vibration response at some point on a structure. Hence, 
the current stationarity tests which consider only mean 
and mean square values are reasonable procedures to 
establish weak stationarity. 

Generally speaking, a verification of weak stationarity 
is sufficient for many practical applications. For example, 
only weak stationarity is required to properly measure 
and interpret power spectra information in conventional 
stationary terms. However, there are certain specialized 
applications where an assumption of strong stationarity 
is of importance. For example, the measurement of prob- 
ability density functions and the application of resulting 
probability statements requires a time invariance of 
higher moments for the data in question. 

For the special case of data with a Gaussian probability 
density function, the verification of weak stationarity also 
establishes strong stationarity since all higher moments of 
a Gaussian density function are defined by the first two 
(mean and mean square values). For non-Gaussian data, 
however, a proper verification of strong stationarity 
would technically require a test for time invariance of 
the entire probability density function for the data. Non- 
parametric tests, as well as special parametric tests, for 
stationarity are discussed and verified in Ref. 1, 2, 3. 
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111. ESTIMATION OF M E A N  VALUES 

The estimation of any parameter of a random process 
x(t)  may be related to the estimation of the mean value of 
a second random process ~ ( t ) ~  which is derived from x( t ) .  
This is a rather strong statement so that before proceed- 
ing further a few examples will be provided. 

1. Mean value of x( t )  

Let Y(t) = x ( t )  

Then E CY(t)l = E C W  

Let Y(t> = z w  
Then E[Y(t)l = E[9wl 

2. Mean square value of x ( t )  

3. Autocorrelation function of z(t) 

k t  y(t) = x ( t )  x ( t  - T) 

Then 

E[y(t)] = E[x(t) x ( t  - T ]  = R, (t, t - r )  

where R, (tl, t2) is the autooorrelation function of r(t) 

and T is a given time delay. 

4. Time-varying power spectrum of x( t )  

Then 

where G, (t, f )  is the physically realizable one-sided 
(f 2 0) time-varying power spectrum of x(t ) ,  and 
x(t,  f, B) is the result of passing x( t )  through a nar- 
row bandpass filter of bandwidth B centered at the 
frequency f. 

Thus, detailed consideration should be given to proper 
estimation of mean values. However, when determining 
the errors caused by sample size, record length, band- 
width resolution, etc., changes in the probability dis- 
tributions caused by transforming x ( t )  into y(t) must be 
taken into account. These effects will be discussed in 
subsequent Sections. 

A. Ensemble Averaging 
Mean values can be estimated by using an average- 

response computer that performs the following operation 
to calculate a sample mean value from a sample of size N 

(Fig. 2). For N records {xi (t); 0 _< t _< T; i = 1,2, ... , N }  
from a nonstationary process x( t ) ,  compute the estimate 

1 N  m(t) = - N 
* = 1  

The quantity m(t) will differ over different choices of the 
N samples {xi@)}. Consequently, one must investigate 
how closely an arbitrary measurement m(t), approximates 
the true mean value fi(t), which is given by the expected 
value 

(3) 

Note that m(t) is an unbiased estimate of the true mean 
value for all t, independent of N. 

A measure of the error involved in estimating ~ ( t )  by 
m(t) is the variance of m(t) given by 

4 ( t )  = E [ {m(t> - P ( ~ > ) " ]  (4) 

The square root of the variance a,,,(t), called the standard 
deviation, provides the indicator that determines how 
closely a set of measurements of m(t) clusters about its 
mean value ~ ( t ) .  

In many practical applications, the N samples used to 
compute m(t) are statistically independent and this will 
be assumed here. Upon expanding Eq. (4), it is seen that 

(5) 

.1( ti "&:E:- ~ ENSEMBLE AVERAGER ~ m ( t )  

(ADD AND DIVIDE 
BY N )  

MEMORY 
X J t )  

1 

Fig. 2. Nonstationary mean value measurement 

3 
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where u:(t) is the variance associated with the nonsta- 
tionary process x(t). It should be noted that assuming 
that the samples are independent causes all the cross- 
product terms (i # j )  in the double sum of Eq. (5) to be 
zero. 

As shown in Ref. 2, a knowledge of the mean value and 
variance for the random variable m(t) at any time t en- 
ables one to answer questions concerning the range of 
the results at any time t without knowing the exact 
probability distribution function for m(t).  From the 
Chebyshev inequality, which applies to arbitrary general 
situations, one may state with 89% confidence, for ex- 
ample, that p ( t )  lies inside the range m(t)  + 3 4 t ) .  In 
equation form, for any constant c > 0, the Chebyshev 
inequality is 

Thus, for c = 3, this probability is at most (1:9), giving 
the 89% confidence limits as illustrated in Fig. 3. 

Fig. 3. 89 % confidence limits for arbitrary distribution 
based upon the Chebyshev inequality 

A stronger statement can be made if one can justify 
an assumption that m(t) follows a normal (Gaussian) dis- 
tribution at any value of t. For this special case, a 95% 
confidence band is given by the range m(t) 2 ~ , ( t ) .  
Thus, an observed measurement for m(t) in the Gaussian 
case yields a greater confidence of being close to the 
theoretical mean value than in the case where the under- 
lying probability distribution is unknown. 

Two main steps are involved in a measurement of 
m(t). The first step is to obtain and store each record 
x i ( t )  as a function of t .  This may be done continuously 
for all t in the range 0 5 t 5 T ,  or discretely by some 
digitizing procedure. After this has been done for N 
records, the next step is to perform an ensemble averag- 
ing by adding the records together and dividing by N .  If 
each xi(t) is digitized in, say M steps, then the total 
number of stored values would be M N .  

4 

6. Short-Time Averaging 

One special technique currently being employed to 
estimate nonstationary mean values when only one or a 
few samples are available is based upon obtaining a con- 
tinuous short-time average. The effect of a time average 
is to smooth the random fluctuations over the averaging 
interval and thus reduce the uncertainty in the vtimate. 
This technique is discussed in Ref. 4 and 7 for mean 
square value measurements. 

Suppose that x(t) is averaged over a time 2s. The re- 
sulting random process z ( t )  is thus defined by 

The expected value of z( t )  is easily seen to be 

(7) 

where p ( v )  is the true mean value of x ( t )  at t = V .  In general, 
the expected value of z ( t )  will be a biased estimate of p(t)  
because of the integration. To determine the bias error, 
assume that p( t )  can be represented in the interval 
( t - s ,  t +s )  by a power series of order N ,  namely 

N 

P ( V )  = c (.-V (9) 
n=o 

where t - s < v < t + s. 
Upon substitution of Eq. (9) into Eq. (8), it follows that 

where the “e” within the summation sign means that only 
even values are used. 

The bias error in estimating p(t) is defined by 

b(t, s) = E [ Z ( t , ]  - P ( t )  

It  is clear that if p(t)  is a polynomial of moderate order, 
a large bias error can be introduced into the estimation 
procedure. In most practical applications, however, the 
variations in p ( t )  are not too complicated within an interval 
of length 2s, since s is usually small. This means that, 
within each interval of length 2s, p( t )  can be considered 
to be a polynomial of degree two or less and the resulting 
bias error will be negligible or zero. 
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The variance in estimating p(t)  by a short-time average 
is given by 

u (t) = E 2 [ {z(t> - dt)I2] (12) 
Upon carrying out the operations indicated in Eq. (12) 
it is seen that for short-time averaging 

t + C  

UZ(t) =&/-I C 2 ( ) dvd? + bZ (t, S) (13) 
t-8 

where C2(v, 9) is the covariance function of x( t )  at t ,  = Y 

and t2 = v, defined by Eq. (28). The double integral occur- 
ring in Eq. (13) is quite difficult to evaluate even for 
simple cases. The optimum averaging time s for minimum 
variance U; (t) can be defined from Eq. (13) by setting the 
derivative with respect to s equal to zero. 

There is one reasonably general case, however, where 
reduction to a single integral may be achieved. Suppose 
that the bias term can be neglected and the random 
process x ( t )  is stationary except for the timedependent 
mean value. In this situation, the double integral may be 
reduced to a single integral involving the physically 
realizable one-sided (f 2 0) power spectral density func- 
tion G2(f) of the random process, namely 

Equation (14) shows that in this situation the variance 
is independent of time since the variable t does not 
appear on the right-hand side. 

C. Orthogonal Funcfion Averaging 

Another special technique is based upon fitting a Kth- 
order orthogonal function to x ( t )  and using the resulting 
expansion to estimate the mean value. This technique is 
discussed in Ref. 4 and 7. 

k t  { P k ( t ) ,  k = 0, * * -, K }  be a sequence of ortho-normal 
functions defined on the interval (0, T). Thus 

Let LE(t) be a linear combination of the P k ( t ) :  

The coefficients a k  are to be determined by multiplying 
x ( t )  by P k ( t )  and integrating over (0, T). Thus 

(17) 

The expected value of a k  is given by 

E [ a k ]  = I‘ P(t )  P k ( t )  at = b k  (18) 

where bk is defined as the kth coefficient in the Orthogonal 
expansion of p(t). The expected value of Lg(t)  is thus 

K 

Equation (19) indicates that unless p(t) can be represented 
exactly by a Kth order expansion, Lg(t) is a biased estimate 
of At). 

The integrated mean square error in approximating p( t )  
by L ( t )  is 

€’ = E lT [Lg(t)  - / ~ ( . ( t ) ] ’  di? (a) 
Upon carrying out the operations indicated in Eq. (a), it 
is seen that the expression for eZ becomes 

+ k / l T  cz (u, 0) P k  (u) P k  (0) du do (21) 
k=O 0 0 

where C2(u,u) is the covariance function defined by 
Eq. (28). Equation (21) has several interesting properties 
which result from the use of the orthogonal expansion. 
Let €2 represent the first two terms of ez, called the tnm- 
cation error. It is clear that these two terms involve only 
p( t )  and the coefficients in the orthogonal expansion of p(t), 
and thus are independent of the higher moments of r(t). 
The truncation error e: in using a finite orthogonal ex- 
pansion is thus completely isolated from the error caused 
by higher order effects. This property is of great practical 
importance since it permits independent investigations 
of the “signal” and “noise” to be carried out. 

It should be noted that €;is always positive or zero. 
This follows from the fact that, for any ortho-normal 
system, Bessel’s inequality (Ref. 5) applies so that 

where the equality sign holds if p ( t )  can be represented 
exactly by a Kth degree expansion. 

The final term in the expression for e2 is the contribution 
of the noise to the mean square error and will be denoted 
bye:. Unless C2(u, u) is known, it is not possible to 

5 
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evaluate the double integrals; however, an upper bound 
may be obtained by using the fact that C,(u,v) 5 C,(u,u). 
Thus, 

Since Po(o) = l / g ,  the orthogonality property of the 
set { P k  ( o ) }  shows that €or k .f 0, 

Thus all the terms in the second line of Eq. (23) are zero 
except the k = 0 term, and 

If the integrated mean-square-error criterion is applied 
to the ensemble-averaging technique, it is easily shown 
that the resulting mean square error is exactly equal to the 
right side of Eq. (25). This means that by choosing a 
suitable value of K to minimize eK, an improved estimate 
of p ( t )  will be obtained in almost all cases through the 
use of the orthogonal expansion. 

As a final note, it should be mentioned that the pre- 
ceding analysis is unchanged if the measured data are 
discrete rather than continuous. For the discrete case, the 
integral signs should be replaced by summations over 
the data points and discrete orthogonal functions used. 

IV. ESTIMATION OF CORRELATION FUNCTIONS 

For nonstationary random processes x ( t )  and y( t ) ,  the 
correlation functions at arbitrary fixed values of tl and t2 
are defined by the expected values (ensemble averages) 

R, (t17 tz) = E[x( t , )  ~ ( t z ) ]  
(26) R, (a t z )  = E [Y(tl) Y(t2)] 

RCl/ (t17 t 2 )  = E [ x ( t l )  Y ( t Z ) ]  (27) 
The quantities R, (tl, t2)  and R, (tl, tZ) are called non- 
stationary autocorrelation functions, while R,, (tl, tz) is 
called a nonstationary cross-correlation function. Note that 
R,, (tl, t2)  includes R, (tl, t2) as special cases when x = y .  
In practical problems, it is convenient to allow these 
correlation functions to include delta functions. 

The covariance functions are defined by 

c, (tl, t 2 )  = R, (tl, t z )  - P, (tl) pz ( t 2 )  

c, (tl, t z )  = R, (tl, t z )  - Pu (tl) tLy ( t 2 )  

c, (tl, t 2 )  = Rnd (tl, t z )  - k (tl) I”u ( t 2 )  

(28) 

Note that covariance functions and correlation functions 
are identical when the mean values are zero. 

An upper bound for the nonstationary cross-correlation 
(or cross-covariance) function is given by the inequality 

I Rw (ti, t z )  1’ 5 Rz (ti, ti) R, ( t z ,  t z )  (29) 

From the original definitions, one sees that the following 
symmetry properties are satisfied: 

RE ( t z ,  tl) = R, (t17 t ~ )  

R, ( t 2 ,  tl) = R, (tl, t 2 )  

R E ,  ( t 2 ,  tl) = R, (tl, t z )  

(30) 

Thus, the correlation structure of nonstationary random 
processes x ( t )  and y ( t )  may be described by the four func- 
tions R,  (tl, t2 ) ,  R, (tl, t2),  Rw (tl, t2),  and R, (tl, t2).  These 
need be calculated only for values of tl 5 t2 since the 
symmetry properties of Eq. (30) yield results for tl > tz. 

Consider the problem of measuring S, (tl, tz) using a set 
of N sample functions x i ( t )  ; i = 1,2, e . . ,  N , from the non- 
stationary random process. In place of Eq. (26), one should 
compute the ensemble-average estimate 

(31) 
A l N  
R, (ti, t z )  = N C xi (tl) xi ( t z )  

z=1 

6 
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A recommended procedure is to hold tl b e d  and vary tz. 
Let tl = t and let tz = t - T where 7 is a fixed time-delay 
value. This yields 

which for stationary processes would be a function of T 

only, but for nonstationary processes would be a function 
of both t and T. For each fixed delay value t and each 
record xt( t ) ,  calculate and store the product zi(t) x i ( t -7) .  
Repeat for all N records and then perform an ensemble 
average to yield the estimate of Eq. (32). This whole 
operation must be repeated for every Werent Tof concern. 
Figure 4 illustrates this procedure for measuring non- 
stationary autocorrelation functions. A similar procedure 
may be followed for nonstationary crosscorrelation func- 
tion measurements. 

r------------ I 
I 

X J t )  MULTPLIER 

A 
TIME-DELAY 

GENERATOR r 
ENSEMBLE 
AVERAGER 

I 1  ' I  

Fig. 4. Nonstationary autocowelation measurement 

Instead of storing the records and carrying out an 
ensemble averaging on the products xi (t) x i  (t-T), the 
methods of short-time averaging an,d orthogonal-function 
averaging may be used to estimate R, (t, t-T).  This is indi- 
cated in Fig. 4 by the dotted lines. For the special delay 
value 7 = 0, any of these methods will provide an estimate 
of the nonstationary mean square value of x ( t ) .  

V. ESTIMATION OF SPECTRAL DENSITY FUNCTIONS 

Three different methods to describe nonstationary spec- 
tra will now be discussed. Each method has very special 
features and properties. These three methods are: 

1. Double-Frequency Spectra 

2. Time-Varying Power Spectra 

3. Time-Averaged Power Spectra 

Methods 1 and 2 are considered to be the sign&cant theo- 
retical ways to analyze nonstationary spectra. The time- 
varying and time-averaged power spectra of Methods 2 
and 3 are measurable experimentally. This is not possible 
for the theoretical spectra of Method 1. Method 3 is 
included because it may be helpful for certain applications 
where the detailed time structure is not of importance. 
Further discussion on these methods appears in Ref. 6. 

7 
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is called a generalized (nonstationury) cross-spectral den- 
sity function. They are defined for both positive and 
negative f l  and f 2 .  Observe that the definition for S,, (fl, f 2 )  

includes S, (fl, f 2 )  and S, (fl, f 2 )  as special cases. The in- 
verse double Fourier transform relations for s,, (fl, f 2 )  is 

A major limitation in the usefulness of the double- 
frequency spectra in engineering applications is that these 
quantities are not subject to direct measurement. Instead, 
the associated nonstationary correlation functions must be 
computed for all possible time pairs, and then a double 
Fourier transform must be computed for the various fre- 
quency pairs of interest. In spite of this limitation, how- 
ever, significant theoretical studies can be carried out 
which depend on this representation. This is indicated in 
Section VI, which deals with input-output relations. 
In practical problems, it is convenient to allow these 
spectral density functions to include delta functions. 

B. Time-Varying Power Spectra 

Let xi(t) be a sample function of a zero mean, non- 
stationary process { x ( t ) }  which is operated upon as shown 
in Fig. 5. 

Assume that the filter is an ideal rectangular filter with 
a frequency response function given by 

H ( v ) = l  , f - T < I Y l < f + ,  B B 

(36) = 0 , elsewhere 

where B is the filter bandwidth and f is the center fre- 
quency. Although the ideal filter is not physically realiz- 
able, it is a good approximation of many narrow-band 
filters. 

The corresponding weighting function is simply the 
inverse Fourier transform of H ( v )  so that 

The filter output is given by 

and is the instantaneous value of that part of xi(t) which 
lies within the bandwidth B centered at the frequency f .  
The output of the squaring device is 

It should be noted that the right side of Eq. (39) is 
always non-negative since it represents the square of a 
real function of time. Also, f and B are contained in h(6) 
and h ( ~ ) ,  and f 2 0 for real narrow-band filters. This 
requirement on f will be assumed henceforth so as to 
derive a one-sided spectrum. 

By recording x: (t, f ,  B )  as a function of time, repeating 
the filter-square-record operation N times, and ensemble 
averaging, an estimate of the average value of x2 (t, f ,  B )  
is obtained. Letting N become arbitrarily large will cause 
the estimate to converge to the true average value. Thus, 

1 N  
E [x2 (t, f ,  B ) ]  = lim C r l  (t, f ,  B )  (40) 

N+m i=i 

NARROW - B A N D PA ss 
BANDWIDTH B 

SQUARE-LAW 
F I LTER WITH RECTI FIER x,? ( t , f ,B)  X i ( t 1  

Fig. 5. Filter-squaring operation 
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X i W +  

Division by the bandwidth B and letting B approach 
zero now yields a physically meaningful nonstationary 
time-varying power spectrum: 

I 
NARROW-BANDPASS MULTIPLE- I 

FILTER WITH + STORE I 
BANDWIDTH B 7 MEMORY 

I 

where the one-sided power spectral notation G,(t,f) 
states the fact that f 2 0. If it is desired for mathematical 
reasons to include negative f, then G, (t, f )  would be re- 
placed in the usual way by the two-sided power spec- 
trum s, (t, f) ,  where half the power is distributed in the 
negative frequency range. Observe that G, (t, f )  or S, (t, f )  
will be non-negative for all t and f, in agreement with 
physical requirements for a meaningful spectrum. In 
terms of G,(t,f) or S,(t , f ) ,  the mean square value 
E [ x ' ( t ) ]  can be calculated by carrying out the inte- 
gration 

E [x* ( t ) ]  = Lrn G (f, f )  df = 1: s, (t,  f )  df (42) 

The mean-square-value portion in any positive frequency 
range (fl, f2) can be found by integrating C, (t, f )  over 
that frequency range. 

For finite B, an estimate of G, (t, f) from a set of N 
records is given clearly by 

(43) 

The estimate will always be non-negative for all t and f ,  
and may be measured as illustrated in Fig. 6. Equation 
(41) shows that this estimate approximates the true value 
only if both N-w and B+O. Thus, a bias error will 
occur as well as a statistical error for finite B and N. 

Fig. 6. Time-varying power spectrum measurement 

A 

To measure G,(t,f) accurately, one would need a 
large collection of records if an ensemble averaging is to 
be performed. This may be a major problem for some 
afplications. Another limitation on the usefulness of 
G, (t, f )  is that it must be determined for each frequency 
of interest. Thus, the entire sequence of filtering, squar- 
ing, storing, and averaging must be performed at some 
initial frequency fl, and then repeated at all other fre- 
quencies of interest. The result of this processing is to 
generate a family of one-dimensional functions, G, (t, fj), 
i = 1, ... , hi,  which approximates the two-dimensional 
function G, (t, f ) .  Short-time averaging or orthogonal- 
function averaging can replace ensemble averaging, as 
indicated by the dotted lines in Fig. 6. 

C. Time-Averaged Power Spectra 

A function related to the time-varying power spectrum 
G, (t ,  f ) ,  and which may have important applications in 
the characterization of nonstationary processes, is the 
time-averaged power spectrum defined for f _> 0 by 

where T is the interval of interest. The value of T could 
be the entire duration of the nonstationary process, in 
which case a limiting operation on T may be involved, 
or some smaller interval, such as a tape-loop length,'in 
which the spectral structure of the process is of particular 
interest. Clearly, E, (f ,  T )  is non-negative for all f and T. 

When T approaches infinity, G, ( f ,  T) will be re- 
placed by E,  ( f )  where 

If the two-sided spectrum S , ( t , f )  is used in place of 
G, (f ,  t), then E, (f, T) should be replaced by s, (f ,  T). 
This in turn, becomes 5, ( f )  as T approaches infinity. 

For a sample function x ( t )  of length T from a nonsta- 
tionary process, an estimate of e, ( f ,  T) is given by 

9 
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Equations (41) and (46) show 

(47) 

A 

Thus, e, ( f ,  T )  will be a biased e s t ip t e  of ZJ ( f ,  T )  for 
finite B. A procedure for measuring e, ( f ,  T )  is illustrated 
in Fig. 7. This is precisely the same procedure as one 
would follow for stationary data. 

Problems which are of concern here deal with ques- 
tions of the length of T required to give an accurate 

estimate of G, ( f ,  T ) ,  and the sampling distribution of 
these estimates for different nonstationary processes. The 
bias effects of finite B need to be investigated. These 
matters are not easy to solve analytically and may require 
considerable experimental testing for various cases of 
interest. The time-averaged power spectrum of Fig. 7, 
however, is simple to measure and can result in substan- 
tial savings in processing costs in some cases. The finding 
of appropriate short averaging times and bandwidths to 
use for different nonstationary processes can lead to a 
meaningful interpretation of how nonstationary power 
spectra change with time. 

x 2 (  f.f,B) 

RECTIFIER 
FILTER WITH 

BANDWIDTH B 

I+- DIVISION BY 
G, "'"4 BANDWIDTH B 

Fig. 7. Time-averaged power spectrum measurement 

VI. INPUT-OUTPUT RELATIONS FOR NONSTATIONARY DATA 

Consider sample functions x ( t )  from a nonstationary 
random process acting as input to a constant-parameter 
linear system with weighting function h ( ~ )  and frequency- 
response function H ( f ) .  By definition, 

~ ( f )  1% h(T) e - i r n l +  d7 

y(t) = lm h(7) x ( t  - T )  d T  

(48) 

with h(7) = 0 for 7 < 0 when the system is physically 
realizable, which will be assumed here. The output y ( t )  
will also belong to a nonstationary random process and 
is given in the time domain by 

(49) 

and in the frequency domain by 

W) = H(f )  X ( f )  (50) 
where X ( f )  and Y(f)  are the Fourier transforms of x ( t )  
and y ( t ) ,  respectively, assuming, of course, that they exist. 

A more general result occurs for nonstationary double- 
frequency spectra which does not require existence of 
X ( f )  and Y(f), but merely existence of the nonstationary 
spectra. In terms of the double-frequency spectra defined 
by Eq. (33)  and (34), the following generalized input- 
output nonstationary spectral relation is derived in Ref. 2: 

s, ( f l ,  f.) = H *  ( f l )  H(fJ S.r ( f l ,  f ? )  (51) 
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where H * ( f )  is the complex conjugate of H ( f ) .  For the 
special case of stationary data, it is shown that S, ( f l ,  f2) 
and S, ( f l ,  f 2 )  are nonzero only for f = f l  = f 2 .  Here 
Eq. (51) reduces to the familiar result 

Sv ( f )  = j H(f) 1' Sr ( f )  (52) 

The generalized nonstationary cross-spectral relation 
between input and output is given by 

sz, ( f i ,  f * )  = H(f2) sz  ( f l ,  f* )  (53) 

For the special case of stationary data, this reduces to 
the familiar result 

Equations (51) and (53) indicate how double-frequency 
spectra should be used to describe input-output relations 
for nonstationary data. Their calculation for actual prob- 
lems can become quite complicated in spite of the simple 
appearance of these formulas. 
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